Sains Malaysiana 53(10)(2024): 3327-3340

http://doi.org/10.17576/jsm-2024-5310-08

 

Analisis Tinjauan SistematikKesan Iklim dan Altitud Tinggi terhadap Variasi DNA Nuklear dan MitokondriaManusia

(Systematic Review Analysis of the Effect of Climate and High Altitude on Human Nuclear and Mitochondrial DNA Variations)

 

SHAHRUL HISHAM BIN ZAINAL ARIFFIN1,*, LIM KOON SEANG1, INTAN ZARINA ZAINOL ABIDIN2, ROHAYA MEGAT ABDUL WAHAB3 & RAMZAH DAMBUL4

 

1School of Bioscience and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

2Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Cyberjaya, 63000 Cyberjaya, Selangor, Malaysia

3Department of Orthodontics, Faculty Dentistry, Universiti Kebangsaan Malaysia, 50300 Kuala Lumpur, Malaysia

4Faculty of Humanities, Arts and Heritage, Universiti Malaysia Sabah, 88400 Kota Kinabalu, Sabah, Malaysia

 

Diserahkan: 4 Jun 2024/Diterima: 12 Ogos 2024

 

Abstrak

Mutasi membolehkan manusia beradaptasi dengan perubahan persekitaran melalui proses pemilihan semula jadi, seterusnya menghasilkan variasi genetik. Perubahan iklim merupakan salah satu penyumbang penting dalam adaptasi dan evolusi manusia. Penyelidikan ini bertujuan untuk menilai secaratinjauan sistematik penemuan terkini mengenai kesan pelbagai faktor iklim ke atas variasi genetik manusia. Analisis tinjauan sistematik dijalankan mengikut garis panduan PRISMA dengan pencarian melibatkan kesemua artikel yang diterbitkan antara tahun 2014 hingga 2024 dari lima pangkalan data elektronik utama iaitu PubMed, Web of Science, Medline, Scopus dan ScienceDirect. Hasil tinjuan mendapati 15 artikel telah memenuhi kesemua kriteria dan dimasukkan dalam kajian ini. Hasil tinjauan juga menunjukkan faktor persekitaran seperti iklim sejuk (suhu -71.2 °C hingga 8.5 °C), iklim tropika, iklim sederhana dan altitud yang tinggi (>2500 m dari aras laut) telah membentuk variasi genetik dalam populasi manusia. Termoregulasi merupakan mekanisme penyesuaian utama dalam kajian melibatkan kesan iklim dan altitud tinggi terhadap genetik manusia. Terdapat10 gen nuklear iaitu UCP1, UCP2, UCP3, DIO2, FTO, PPARG, PPARGCIA, CIDEA, LEPR dan PRDM16 dikaitkan dengan termoregulasi, manakala5 gen mitokondria seperti MT-ND1, MT-ND2, MT-CYB, MT-ATP6, dan MT-ND5 terlibat dalam kajian penyesuaian iklim sejuk dan altitud tinggi. Gen UCP1 sering dilaporkan beradaptasi dengan iklim sejuk melalui termoregulasi, sementara5 gen mitokondria (MT-ND1, MT-ND2, MT-CYB, MT-ATP6 dan MT-ND5) pula beradaptasi dengan kedua-dua iklim sejuk dan altitud tinggi. Gen ini berpotensi untuk diaplikasikan dalam memahami mekanisme penyesuaian genetik manusia terhadap iklim.

 

Kata kunci: Adaptasi; DNA; genetik manusia; iklim

 

Abstract

Mutations enable humans to adapt to environmental changes through natural selection, resulting in genetic variation. Climate change is a significant driver of human adaptation and evolution. This study aims to systematically review recent findings on the impact of various climatic factors on human genetic variation. A systematic review analysis followed PRISMA guidelines, searching for all articles published between 2014 and 2024 in five major electronic databases: PubMed, Web of Science, Medline, Scopus, and ScienceDirect. The search yielded fifteen articles meeting all criteria and were included in this study. The findings indicate that environmental factors such as cold climates (temperatures ranging from -71.2 °C to 8.5 °C), tropical climates, temperate climates, and high altitudes (>2500 m above sea level) have shaped genetic variation in human populations. Thermoregulation emerged as a key adaptation mechanism in studies examining the effects of climate and high altitude on human genetics. 10 nuclear genes- UCP1, UCP2, UCP3, DIO2, FTO, PPARG, PPARGCIA, CIDEA, LEPR, and PRDM16 were associated with thermoregulation, while 5 mitochondrial genes- MT-ND1, MT-ND2, MT-CYB, MT-ATP6 and MT-ND5 were involved in adaptation to cold climates and high altitudes. UCP1 gene is frequently reported to adapt to cold climates through thermoregulation. In contrast, 5 mitochondrial genes (MT-ND1, MT-ND2, MT-CYB, MT-ATP6, and MT-ND5) adapt to both cold climates and high altitudes. These genes have potential applications in understanding the mechanisms of human genetic adaptation to climate.

 

Keywords: Adaptation; climate; DNA; human genetics

 

RUJUKAN

Augustin, J., Franzke, N., Augustin, M. & Kappas, M. 2008. Does climate change affect the incidence of skin and allergic diseases in Germany? Journal der Deutschen Dermatologischen Gesellschaft 6(8): 632-638. https://doi.org/10.1111/j.1610-0387.2008.06676.x

Benton, M.L., Abraham, A., LaBella, A.L., Abbot, P., Rokas, A. & Capra, J.A. 2021. The influence of evolutionary history on human health and disease. Nature Reviews Genetics 22(5): 269-283. https://doi.org/10.1038/s41576-020-00305-9

Beck, H. E., McVicar, T. R., Vergopolan, N., Berg, A., Lutsko, N. J., Dufour, A., Zeng, Z., Jiang, X., van Dijk, A. I. J. M., & Miralles, D. G. 2023. High-resolution (1 km) Köppen-Geiger maps for 1901-2099 based on constrained CMIP6 projections. Scientific Data 10(1): 724. https://doi.org/10.1038/s41597-023-02549-6

Blair, L.M. & Feldman, M.W. 2015. The role of climate and out-of-Africa migration in the frequencies of risk alleles for 21 human diseases. BMC Genetics 16: 81. https://doi.org/10.1186/s12863-015-0239-3

Cardona, A., Pagani, L., Antao, T., Lawson, D.J., Eichstaedt, C.A., Yngvadottir, B., Shwe, M.T., Wee, J., Romero, I.G., Raj, S., Metspalu, M., Villems, R., Willerslev, E., Tyler-Smith, C., Malyarchuk, B.A., Derenko, M.V. & Kivisild, T. 2014 Genome-wide analysis of cold adaptation in indigenous Siberian populations. PLoS ONE 9(5): e98076. https://doi.org/10.1371/journal.pone.0098076

Chen, Y., Gong, L., Liu, X., Chen, X., Yang, S. & Luo, Y. 2020. Mitochondrial DNA genomes revealed different patterns of high-altitude adaptation in high-altitude Tajiks compared with Tibetans and Sherpas. Scientific Reports 10(1): 10592. https://doi.org/10.1038/s41598-020-67519-z

Daanen, H.A. & Van Marken Lichtenbelt, W.D. 2016. Human whole body cold adaptation. Temperature (Austin) 3(1): 104-118. https://doi.org/10.1080/23328940.2015.1135688

Deng, L., Hoh, B.P., Lu, D., Fu, R., Phipps, M.E., Li, S., Nur-Shafawati, A.R., Hatin, W.I., Ismail, E., Mokhtar, S.S., Jin, L., Zilfalil, B.A., Marshall, C.R., Scherer, S.W., Al-Mulla, F. & Xu, S. 2014. The population genomic landscape of human genetic structure, admixture history and local adaptation in Peninsular Malaysia. Human Genetics 133(9): 1169-1185. https://doi.org/10.1007/s00439-014-1459-8

Dos Santos, Á. & Toseland, C.P. 2021. Regulation of nuclear mechanics and the impact on DNA damage. International Journal of Molecular Sciences 22(6): 3178. https://doi.org/10.3390/ijms22063178

Hallmark, B., Karafet, T.M., Hsieh, P., Osipova, L.P., Watkins, J.C. & Hammer, M.F. 2019. Genomic evidence of local adaptation to climate and diet in indigenous Siberians. Molecular Biology and Evolution 36(2): 315-327. https://doi.org/10.1093/molbev/msy211

Hanna, E.G. & Tait, P.W. 2015. Limitations to thermoregulation and acclimatization challenge human adaptation to global warming. International Journal of Environmental Research and Public Health 12(7): 8034-8074. https://doi.org/10.3390/ijerph120708034

Igoshin, A.V., Gunbin, K.V., Yudin, N.S. & Voevoda, M.I. 2019. Searching for signatures of cold climate adaptation in TRPM8 gene in populations of East Asian ancestry. Frontiers in Genetics 10: 759. https://doi.org/10.3389/fgene.2019.00759

Jablonski, N.G. & Chaplin, G. 2017. The colours of humanity: The evolution of pigmentation in the human lineage. Philosophical Transactions of the Royal Society B: Biological Sciences 372(1724): 20160349. https://doi.org/10.1098/rstb.2016.0349

Kalyakulina, A., Iannuzzi, V., Sazzini, M., Garagnani, P., Jalan, S., Franceschi, C., Ivanchenko, M. & Giuliani, C. 2020. Investigating mitonuclear genetic interactions through machine learning: A case study on cold adaptation genes in human populations from different European climate regions. Frontiers in Physiology 11: 575968. https://doi.org/10.3389/fphys.2020.575968

Key, F.M., Abdul-Aziz, M.A., Mundry, R., Peter, B.M., Sekar, A., D'Amato, M., Dennis, M.Y., Schmidt, J.M. & Andrés, A.M. 2018. Human local adaptation of the TRPM8 cold receptor along a latitudinal cline. PLoS Genetics 14(5): e1007298. https://doi.org/10.1371/journal.pgen.1007298

Motoi, M., Nishimura, T., Egashira, Y., Kishida, F. & Watanuki, S. 2016. Relationship between mitochondrial haplogroup and physiological responses to hypobaric hypoxia. Journal of Physiological Anthropology 35: 12. https://doi.org/10.1186/s40101-016-0094-6

Nikanorova, A.A., Barashkov, N.A., Pshennikova, V.G., Nakhodkin, S.S., Gotovtsev, N.N., Romanov, G.P., Solovyev, A.V., Kuzmina, S.S., Sazonov, N.N. & Fedorova, S.A. 2021. The role of nonshivering thermogenesis genes on leptin levels regulation in residents of the coldest region of Siberia. International Journal of Molecular Sciences 22(9): 4657. https://doi.org/10.3390/ijms22094657

Nishimura, T. & Watanuki, S. 2014. Relationship between mitochondrial haplogroup and seasonal changes of physiological responses to cold. Journal of Physiological Anthropology 33(1): 27. https://doi.org/10.1186/1880-6805-33-27

Nishimura, T., Katsumura, T., Motoi, M., Oota, H. & Watanuki, S. 2017. Experimental evidence reveals the UCP1 genotype changes the oxygen consumption attributed to non-shivering thermogenesis in humans. Scientific Reports 7(1): 5570. https://doi.org/10.1038/s41598-017-05766-3

Nowack, J., Giroud, S., Arnold, W. & Ruf, T. 2017. Muscle non-shivering thermogenesis and its role in the evolution of endothermy. Frontiers in Physiology 8: 889. https://doi.org/10.3389/fphys.2017.00889

Park, S., Kario, K., Chia, Y.C., Turana, Y., Chen, C.H., Buranakitjaroen, P., Nailes, J., Hoshide, S., Siddique, S., Sison, J., Soenarta, A.A., Sogunuru, G.P., Tay, J.C., Teo, B.W., Zhang, Y.Q., Shin, J., Van Minh, H., Tomitani, N., Kabutoya, T., Sukonthasarn, A., Verma, N., Wang, T.D., Wang, J.G.; HOPE Asia Network. 2020. The influence of the ambient temperature on blood pressure and how it will affect the epidemiology of hypertension in Asia. Journal of Clinical Hypertension (Greenwich) 22(3): 438-444. https://doi.org/10.1111/jch.13762

Peel, M.C., Finlayson, B.L. & McMahon, T.A. 2007. Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences 11(5): 1633-1644.

Pomeroy, E., Stock, J.T. & Wells, J.C.K. 2021. Population history and ecology, in addition to climate, influence human stature and body proportions. Sci. Rep. 11: 274. https://doi.org/10.1038/s41598-020-79501-w

Quagliariello, A., De Fanti, S., Giuliani, C., Abondio, P., Serventi, P., Sarno, S., Sazzini, M., & Luiselli, D. 2017. Multiple selective events at the PRDM16 functional pathway shaped adaptation of western European populations to different climate conditions. Journal of Anthropological Sciences 95: 235-247. https://doi.org/10.4436/JASS.95011

Rus Dina Rus Din, Shahrul Hisham Zainal Ariffin, Sahidan Senafi, Rohaya Megat Abdul Wahab & Intan Zarina Zainol Abidin. 2014. Molecular mitochondrial DNA and radiographic approaches for human archaeology identification. Sains Malaysiana 43(10): 1523-1535.

Rus Dina Rus Din & Shahrul Hisham Zainal Ariffin. 2022. Tulang Purba Kapal Karam Wanli. Bangi: Penerbit Universiti Kebangsaan Malaysia.

Rus Dina Rus Din, Siti Nur Zahidah Zahari, Rohaya Megat Abdul Wahab, Zaidah Zainal Ariffin, Liew Yi Ying & Shahrul Hisham Zainal Ariffin. 2019. Penentuan umur manusia menggunakan rongga pulpa gigi pramolar pertama melalui pendekatan Cameriere. Sains Malaysiana 48(9): 1855-1865. http://dx.doi.org/10.17576/jsm-2019-4809-06

Sahidan Senafi, Shahrul Hisham Zainal Ariffin, Rus Dina Rus Din, Rohaya Megat Abdul Wahab, Intan Zarina Zainol Abidin & Zaidah Zainal Ariffin. 2014. Haplogroup determination using hypervariable region 1 and 2 of human mitochondrial DNA. Journal of Applied Sciences 14: 197-200.

Sazzini, M., Schiavo, G., De Fanti, S., Martelli, P.L., Casadio, R. & Luiselli, D. 2014. Searching for signatures of cold adaptations in modern and archaic humans: Hints from the brown adipose tissue genes. Heredity 113(3): 259-267. https://doi.org/10.1038/hdy.2014.24

Shahrul Hisham, Z., Sahidan, S., Rohaya, M.A., Afeefah, M.S., Zarina, Z.I., Hidayah, J.N., Nadiah, R.M. & Zaidah, Z.A. 2009. Molecular gender determination of ancient human from Malay PeninsularAmerican Journal of Applied Sciences 6(10): 1770-1775.

Sharma, V., Varshney, R. & Sethy, N.K. 2022. Human adaptation to high altitude: A review of convergence between genomic and proteomic signatures. Human Genomics 16(1): 21. https://doi.org/10.1186/s40246-022-00395-y

Skevaki, C., Nadeau, K.C., Rothenberg, M.E., Alahmad, B., Mmbaga, B.T., Masenga, G.G., Sampath, V., Christiani, D.C., Haahtela, T. & Renz, H. 2024. Impact of climate change on immune responses and barrier defenseThe Journal of Allergy and Clinical Immunology 153(5): 1194-1205. https://doi.org/10.1016/j.jaci.2024.01.016

Smith, K. R., Woodward, A., Campbell-Lendrum, D., Chadee. D. D., Honda, Y., Liu, Q. 2014. Human health: impacts, adaptation, and co-benefits. In: Climate Change 2014: Impacts, Adaptation, and Vulnerability Part A: Global and Sectoral Aspects Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Field CB, Barros VR, Dokken DJ, Mach KJ, Mastrandrea MD, Bilir TE, et al., eds. Cambridge, UK: Cambridge University Press;pp. 709–754.

Sohani, Z.N., Meyre, D., de Souza, R.J., Joseph, P.G., Gandhi, M., Dennis, B.B., Norman, G. & Anand, S.S. 2015. Assessing the quality of published genetic association studies in meta-analyses: The quality of genetic studies (Q-Genie) tool. BMC Genetics 16: 50. https://doi.org/10.1186/s12863-015-0211-2

Stibel, J.M. 2023. Climate change predictive of body size and proportionality in humans. Evol. Biol. 50: 461-475. https://doi.org/10.1007/s11692-023-09616-1

Wang, Y., Huang, X., Peng, F., Han, H., Gu, Y., Liu, X. & Feng, Z. 2022. Association of variants m.T16172C and m.T16519C in whole mtDNA sequences with high altitude pulmonary edema in Han Chinese lowlanders. BMC Pulm. Med. 22(1): 72. https://doi.org/10.1186/s12890-021-01791-1

Yan, C., Duanmu, X., Zeng, L., Liu, B. & Song, Z. 2019. Mitochondrial DNA: Distribution, mutations, and elimination. Cells 8(4): 379.

 

*Pengarang untuk surat-menyurat; email: hisham@ukm.edu.my

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

sebelumnya